《正弦定理》教學(xué)設(shè)計(jì)
2010級數(shù)學(xué)課程與教學(xué)論專業(yè)華娜學(xué)號201002101146
一、教材分析
《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個(gè)重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過了正弦函數(shù)和余弦函數(shù),知識儲備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實(shí)際生活中許多測量問題的工具。因此熟練掌握正弦定理能為接下來學(xué)習(xí)解三角形打下堅(jiān)實(shí)基礎(chǔ),并能在實(shí)際應(yīng)用中靈活變通。
二、教學(xué)目標(biāo)
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
知識目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論,并能掌握多種證明方法。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。
四、教法分析
依據(jù)本節(jié)課內(nèi)容的特點(diǎn),學(xué)生的認(rèn)識規(guī)律,本節(jié)知識遵循以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,采用與學(xué)生共同探索的教學(xué)方法,命題教學(xué)的發(fā)生型模式,以問題實(shí)際為參照對象,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化,并且運(yùn)用例題和習(xí)題來強(qiáng)化內(nèi)容的掌握,突破重難點(diǎn)。即指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法。學(xué)生采用自主式、合作式、探討式的學(xué)習(xí)方法,這樣能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)學(xué)生的合作意識和探究精神。
五、教學(xué)過程
本節(jié)知識教學(xué)采用發(fā)生型模式:
1、問題情境
有一個(gè)旅游景點(diǎn),為了吸引更多的游客,想在風(fēng)景區(qū)兩座相鄰的山之間搭建一條觀光索道。已知一座山A到山腳C的上面斜距離是1500米,在山腳測得兩座山頂之間的夾角是450,在另一座山頂B測得山腳與A山頂之間的夾角是300。求需要建多長的索道?
可將問題數(shù)學(xué)符號化,抽象成數(shù)學(xué)圖形。即已知AC=1500m,∠C=450,∠B=300。求AB=?
此題可運(yùn)用做輔助線BC邊上的高來間接求解得出。
提問:有沒有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來的方法?
思考:我們知道,在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系。那我們能不能得到關(guān)于邊、角關(guān)系準(zhǔn)確量化的表示呢?
2、歸納命題
我們從特殊的三角形直角三角形中來探討邊與角的數(shù)量關(guān)系:
在如圖Rt三角形ABC中,根據(jù)正弦函數(shù)的定義
點(diǎn)擊下載完整版說課: