国产热热,国产日韩欧美一区二区三区在线,午夜777,国产精品三区四区,9久9久女女免费精品视频在线观看,91大神在线观看视频,91在线|欧美:

文武教師招聘網(wǎng)
首頁 浙江教師 福建教師 江蘇教師 廣東教師 江西教師 安徽教師 北京教師 上海教師 天津教師 湖南教師 湖北教師 河南教師
河北教師 海南教師 重慶教師 貴州教師 遼寧教師 吉林教師 山西教師 廣西教師 云南教師 陜西教師 甘肅教師 青海教師 四川教師
山東教師 內(nèi)蒙古教師 黑龍江教師 寧夏教師 新疆教師 西藏教師 教師面試 說課稿 考試大綱 教師招聘試題 特崗教師 教師資格考試 教師資格大綱
杭州教師  廣州教師  長沙教師  南京教師  福州教師  南昌教師  教師考試大綱  教師資格大綱  政治資料  地理資料
您現(xiàn)在的位置:首頁 >> 說課稿 >> 高中數(shù)學(xué)說課稿 >> 內(nèi)容

高中數(shù)學(xué)說課稿:人教版高中數(shù)學(xué)(必修)第二冊(上)《曲線和方程》優(yōu)秀說課稿模板

時間:2012-10-7 17:09:19 點擊:

  說課教案
  
  7.6曲線和方程(2)求曲線的方程
  
  ●四川省成都石室中學(xué)蔣富揚
  
  教材《人教版全日制普通高中教科書(必修)第二冊(上)》
  
  一、教材分析
  
  1.教材背景
  
  作為曲線內(nèi)容學(xué)習(xí)的開始,“曲線與方程”這一小節(jié)思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側(cè)重對所求方程的檢驗.
  
  本課為第二課時
  
  主要內(nèi)容有:解析幾何與坐標(biāo)法;求曲線方程的方法(直譯法)、步驟及例題探求.
  
  2.本課地位和作用
  
  承前啟后,數(shù)形結(jié)合
  
  曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學(xué)習(xí)的必備,是后面平面曲線學(xué)習(xí)的理論基礎(chǔ),是解幾中承上啟下的關(guān)鍵章節(jié).
  
  “曲線”與“方程”是點的軌跡的兩種表現(xiàn)形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數(shù)形式;求曲線方程是用方程研究曲線的先導(dǎo),是解析幾何所要解決的兩大類問題的首要問題.體現(xiàn)了坐標(biāo)法的本質(zhì)——代數(shù)化處理幾何問題,是數(shù)形結(jié)合的典范.
  
  后繼性、可探究性
  
  求曲線方程實質(zhì)上就是求曲線上任意一點(x,y)橫縱坐標(biāo)間的等量關(guān)系,但曲線軌跡常無法事先預(yù)知類型,通過多媒體演示可以生動展現(xiàn)運動變化特點,但如何獲得曲線的方程呢?通過創(chuàng)設(shè)情景,激發(fā)學(xué)生興趣,充分發(fā)揮其主體地位的作用,學(xué)習(xí)過程具有較強的探究性.
  
  同時,本課內(nèi)容又為后面的軌跡探求提供方法的準(zhǔn)備,并且以后還會繼續(xù)完善軌跡方程的求解方法.
  
  數(shù)學(xué)建模與示范性作用
  
  曲線的方程是解析幾何的核心.求曲線方程的過程類似于數(shù)學(xué)建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結(jié)規(guī)律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.
  
  數(shù)學(xué)的文化價值
  
  解析幾何的發(fā)明是變量數(shù)學(xué)的第一個里程碑,也是近代數(shù)學(xué)崛起的兩大標(biāo)志之一,是較為完整和典型的重大數(shù)學(xué)創(chuàng)新史例.解析幾何創(chuàng)始人特別是笛卡兒的事跡和精神——對科學(xué)真理和方法的追求、質(zhì)疑的科學(xué)精神等都是富有啟發(fā)性和激勵性的教育材料.可以根據(jù)學(xué)生實際情況,條件允許時指導(dǎo)學(xué)生課后收集相關(guān)資料,通過分析、整理,寫出研究報告.
  
  3.學(xué)情分析
  
  我所授課班級的學(xué)生數(shù)學(xué)基礎(chǔ)比較好,思維活躍,在剛剛學(xué)習(xí)了“曲線的方程和方程的曲線”后,學(xué)生對這種必須同時具備純粹性和完備性的概念有了初步的認(rèn)識,對用代數(shù)方法研究幾何問題的科學(xué)性、準(zhǔn)確性和優(yōu)越性等已有了初步了解,對具體(平面)圖形與方程間能否對應(yīng)、怎樣對應(yīng)的學(xué)習(xí)已經(jīng)有了自然的求知欲望.
  
  二、目標(biāo)分析
  
  1.教學(xué)目標(biāo)
  
  知識技能目標(biāo)
  
  理解坐標(biāo)法的作用及意義.
  
  掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件,選擇適當(dāng)坐標(biāo)系求曲線方程.
  
  過程性目標(biāo)
  
  通過學(xué)生積極參與,親身經(jīng)歷曲線方程的獲得過程,體驗坐標(biāo)法在處理幾何問題中的優(yōu)越性,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
  
  通過自主探索、合作交流,學(xué)生歷經(jīng)從“特殊——一般——特殊”的認(rèn)知模式,完善認(rèn)知結(jié)構(gòu).
  
  通過層層深入,培養(yǎng)學(xué)生發(fā)散思維的能力,深化對求曲線方程本質(zhì)的理解.
  
  情感、態(tài)度與價值觀目標(biāo)
  
  通過合作學(xué)習(xí),學(xué)生間、師生間的相互交流,感受探索的樂趣與成功的喜悅,體會數(shù)學(xué)的理性與嚴(yán)謹(jǐn),逐步養(yǎng)成質(zhì)疑的科學(xué)精神.
  
  展現(xiàn)人文數(shù)學(xué)精神,體現(xiàn)數(shù)學(xué)文化價值及其在在社會進(jìn)步、人類文明發(fā)展中的重要作用.
  
  2.教學(xué)重點和難點
  
  重點:求曲線方程的方法、步驟
  
  難點:幾何條件的代數(shù)化
  
  依據(jù):求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數(shù)法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.
  
  曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數(shù)研究的先決,求曲線方程的過程類似數(shù)學(xué)建模的過程,是課堂上必須突破的難點.
  
  三、教學(xué)方法及教材處理
  
  1.教學(xué)方法:探究發(fā)現(xiàn)教學(xué)法.
  
  遵循以學(xué)生為主體,教師為主導(dǎo),發(fā)展為主旨的現(xiàn)代教育原則,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,通過學(xué)生主動探索、積極參與、共同交流與協(xié)作,在教師的引導(dǎo)和合作下,學(xué)生“跳一跳”就能摘得果實,于問題的分析和解決中實現(xiàn)知識的建構(gòu)和發(fā)展,通過不斷探究、發(fā)現(xiàn),讓學(xué)習(xí)過程成為心靈愉悅的主動認(rèn)知過程,使師生的生命活力在課堂上得到充分的發(fā)揮.
  
  2.學(xué)法指導(dǎo)
  
  學(xué)生學(xué)法:互相討論、探索發(fā)現(xiàn)
  
  由于學(xué)生在嘗試問題解決的過程中常會在新舊知識聯(lián)系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導(dǎo).作為學(xué)生活動的組織者、引導(dǎo)者、參與者,教師要幫助學(xué)生重溫與問題解決有關(guān)的舊知,給予學(xué)生思考的時間和表達(dá)的機(jī)會,共同對(解題)過程進(jìn)行反思等,在師生(生生)互動中,給予學(xué)生啟發(fā)和鼓勵,在心理上、認(rèn)知上予以幫助.
  
  這樣,在學(xué)法上確立的教法,能幫助學(xué)生更好地獲得完整的認(rèn)知結(jié)構(gòu),使學(xué)生思維、能力等得到和諧發(fā)展.
  
  3.設(shè)計理念:
  
  求曲線方程就是將曲線上點的幾何表示形式轉(zhuǎn)化為代數(shù)表示形式。在這轉(zhuǎn)化過程中,學(xué)生通過積極參與、勇于探索的學(xué)習(xí)方式,讓學(xué)生的學(xué)習(xí)過程成為教師指導(dǎo)下的再創(chuàng)造,這也正是建構(gòu)主義理論的本質(zhì)要求;遵循學(xué)生認(rèn)知規(guī)律,尊重學(xué)生個體差異,立足教材,通過對例題的再創(chuàng)造,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,讓不同層次的學(xué)生得到不同層度的發(fā)展;通過激發(fā)興趣,強調(diào)自主探索與合作交流,讓學(xué)生逐步地從學(xué)會走向會學(xué),由被動走向主動,由課堂走向社會,為學(xué)生的終身學(xué)習(xí)和終身發(fā)展奠定良好的基礎(chǔ),也是當(dāng)前新課程所追求的基本理念.
  
  四、教學(xué)過程(教學(xué)設(shè)計)
  
  根據(jù)本課教學(xué)內(nèi)容幾何特性外化的特點,抓住形成軌跡的動點具備的幾何條件,運用坐標(biāo)化的手段及等價轉(zhuǎn)化與數(shù)形結(jié)合的思想方法,突破難點,突出重點.本課的教學(xué)設(shè)計思路是:
  
  創(chuàng)設(shè)情景——從感性的軌跡(圖形)認(rèn)識,到解決生活上的實例,激發(fā)學(xué)生的求知欲望,抓住學(xué)生迫切一試的認(rèn)知心理,自然引入坐標(biāo)法的意義及曲線方程的求法.
  
  例題探求——例題一體現(xiàn)知識的承前啟后.通過例題一的呈現(xiàn),學(xué)生借助已有的知識經(jīng)驗,自主探求獲得問題的求解,在教師的引導(dǎo)下,讓學(xué)生感受求曲線方程的含義及求解步驟;例題二及變式解決建系難點,建系的開放性,對學(xué)生是一種挑戰(zhàn),也是一種創(chuàng)造;兩個例題由淺入深,循序漸進(jìn),體現(xiàn)因材施教.至此,學(xué)生已能初步了解求曲線方程的一般方法和步驟了.
  
  歸納步驟——學(xué)生親身經(jīng)歷求曲線方程的過程,讓學(xué)生歸納(用自己的語言)、表述求解的步驟,體現(xiàn)從“特殊——一般”認(rèn)知規(guī)律,逐步實現(xiàn)教學(xué)目標(biāo).
  
  變式練習(xí)——通過對例題的變式,由學(xué)生求解、回答變式后的含義,深化對認(rèn)知結(jié)構(gòu)的理解,初步體會數(shù)學(xué)的理性與嚴(yán)謹(jǐn),逐步養(yǎng)成質(zhì)疑與反思的習(xí)慣.
  
  反饋練習(xí)——利用學(xué)生探索而發(fā)展來的認(rèn)知水平,運用獲得的知識解決情景創(chuàng)設(shè)中的實際問題,一方面可以考察學(xué)生運用所學(xué)數(shù)學(xué)知識解決實際問題的意識和能力;另一方面是學(xué)生思維的自然順應(yīng),自然釋放,是“一般——特殊”的過程.全面完成教學(xué)目標(biāo).

  
  人教版高中數(shù)學(xué)《曲線和方程(2)求曲線的方程》說課教案.rar

作者:不詳 來源:網(wǎng)絡(luò)
相關(guān)文章
  • 文武教師招聘網(wǎng)(m.ilocsys.com) © 2012 版權(quán)所有 All Rights Reserved.
  • 站長聯(lián)系QQ:799752985 浙ICP備11036874號-1
  • Powered by 文武教師招聘網(wǎng)